Control of enteric neuromuscular functions by purinergic A(3) receptors in normal rat distal colon and experimental bowel inflammation.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Adenosine A(3) receptors mediate beneficial effects in experimental colitis, but their involvement in enteric neuromuscular functions during bowel inflammation is undetermined. This study investigated the regulatory role of A(3) receptors on colonic motility in the presence of experimental colitis. EXPERIMENTAL APPROACH Colitis was induced in rats by 2,4-dinitrobenzenesulfonic acid. A(3) receptors and adenosine deaminase (ADA, adenosine catabolic enzyme) mRNA were examined by RT-PCR. Tissue distribution of A(3) receptors was detected by confocal immunofluorescence. The effects of 2,3-ethyl-4,5-dipropyl-6-phenylpyridine-3-thiocarboxylate-5-carboxylate (MRS1523) (MRS, A(3) receptor antagonist), 2-chloro-N(6) -(3-iodobenzyl)-adenosine-5'-N-methyluronamide (2Cl-IB-MECA) (CIB, A(3) receptor agonist), dipyridamole (DIP, adenosine transport inhibitor) and ADA were assayed on contractile responses evoked by electrical stimulation (ES) or carbachol in colonic longitudinal muscle preparations (LMP). KEY RESULTS RT-PCR showed A(3) receptors and ADA mRNA in normal colon and their increased level in inflamed tissues. Immunofluorescence showed a predominant distribution of A(3) receptors in normal myenteric ganglia and an increased density during colitis. MRS enhanced ES-induced cholinergic contractions in normal LMP, but was less effective in inflamed tissues. After pretreatment with dipyridamole plus ADA, to reduce extracellular adenosine, CIB decreased cholinergic motor responses of normal LMP to ES, with enhanced efficacy in inflamed LMP. A(3) receptor ligands did not affect carbachol-induced contractions in LMP from normal or inflamed colon. CONCLUSIONS AND IMPLICATIONS Normally, adenosine modulated colonic cholinergic motility via activation of A(3) receptors in the myenteric plexus. A(3) receptor-mediated tonic inhibitory control by adenosine was impaired in inflamed bowel, despite increased density of functioning and pharmacologically recruitable A(3) receptors.
منابع مشابه
Involvement of the P2X7 Purinergic Receptor in Colonic Motor Dysfunction Associated with Bowel Inflammation in Rats
BACKGROUND AND PURPOSE Recent evidence indicates an involvement of P2X7 purinergic receptor (P2X7R) in the fine tuning of immune functions, as well as in driving enteric neuron apoptosis under intestinal inflammation. However, the participation of this receptor in the regulation of enteric neuromuscular functions remains undetermined. This study was aimed at investigating the role of P2X7Rs in ...
متن کاملAlteration of nitrergic neuromuscular transmission as a result of acute experimental colitis in rat
Nitric oxide (NO) is a non-adrenergic, non-cholinergic neurotransmitter found in the enteric nervous system that plays a role in a variety of enteropathies, including inflammatory bowel disease. Alteration of nitrergic neurons has been reported to be dependent on the manner by which inflammation is caused. However, this observed alteration has not been reported with acetic acid-induced colitis....
متن کاملPurinergic Signaling in Gut Inflammation: The Role of Connexins and Pannexins
Purinergic receptors play an important role in inflammation, and can be activated by ATP released via pannexin channels and/or connexin hemichannels. The purinergic P2X7 receptor (P2X7R) is of interest since it is involved in apoptosis when activated. Most studies focus on the influence of pannexin-1 (Panx1) and connexin 43 (Cx43) on ATP release and how it affects P2X7R function during inflamma...
متن کاملAdenosine-Mediated Enteric Neuromuscular Function Is Affected during Herpes Simplex Virus Type 1 Infection of Rat Enteric Nervous System
Adenosine plays an important role in regulating intestinal motility and inflammatory processes. Previous studies in rodent models have demonstrated that adenosine metabolism and signalling are altered during chronic intestinal inflammatory diseases. However, the involvement of the adenosinergic system in the pathophysiology of gut dysmotility associated to a primary neurodysfunction is still un...
متن کاملProinflammatory role of vasopressin through V1b receptors in hapten-induced experimental colitis in rodents: implication in IBD.
Vasopressin and its receptors modulate several gut functions, but their role in intestinal inflammation is unknown. Our aims were to determine 1) the localization of V1b receptors in human and rodent colon, 2) the role of vasopressin and V1b receptors in experimental colitis using two approaches: V1b⁻(/)⁻ mice and a selective V1b receptor antagonist, SSR149415, and 3) the mechanisms involved. V...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- British journal of pharmacology
دوره 161 4 شماره
صفحات -
تاریخ انتشار 2010